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Abstract
A theory of free-carrier absorption is given for quantum wires when carriers
are scattered by boundary roughness and the radiation field is polarized along
the length of the wire. The free-carrier absorption coefficient is found to be an
oscillatory function of the photon frequency and of the width of the wire. The
obtained results are compared with different scattering mechanisms for quasi-
one-dimensional structures. It is found that boundary roughness scattering is
important, especially when the width of the wire and the temperature decrease.
In addition, it was found that in quantum wires the electron–boundary roughness
interaction gives a greater contribution to the absorption than the electron–
acoustic phonon interaction. The results are interpreted in terms of boundary
roughness-assisted transitions between size quantized subbands.

1. Introduction

Recently there has been considerable interest in systems in which the electron motion is
confined to one or two dimensions. The most interesting situation occurs when the confinement
is of the order of the de Broglie wavelength for electrons. In a quantum wire, when its
width becomes much less than the mean free path, the motion of electrons becomes quasi-
one-dimensional (Q1D). The confinement leads to distinct quantized energy levels and to an
increasing importance of boundary scattering. The physical properties of low-dimensional
semiconducting structures differ from the properties of bulk semiconductors because the
translational symmetry is broken [1]. For carriers confined in a quantum wells (QWs), the
free-carrier absorption (FCA) is practically important for determining the optical absorption.
Scattering-assisted absorption by free electrons and holes in the active QWs then usually
determines the internal loss in optically pumped laser devices with undoped cladding. Even
in electrically pumped devices, assisted FCA can dominate if the lasing mode is optically
confined primarily to the active region, as in interband cascade lasers [2]. FCA in diode optical
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cladding layers consisting of superlattice injectors [3] can also be significant. Since FCA offers
a powerful means for understanding the scattering mechanisms of carriers, it has been studied
theoretically in Q2D structures for the case of absorption assisted by acoustic [4] and polar
optical [5–8] phonon scattering including the effects of phonon confinement [9], piezoelectric
coupling [10], ionized impurities [11], interface roughness [12], electron–electron [13] and
alloy-disorder scattering [14]. FCA has been studied theoretically in Q1D structures only
(to our knowledge) for the case where the carriers are scattered by acoustic [15], acoustic
and optical phonons [16] and alloy disorder [17]. However, roughness scattering is an
important scattering mechanism in QW systems and some quantum-mechanical studies have
been performed [18–28]. Its effect depends strongly on the height and lateral correlation length
of the interface or boundary roughness.

In this paper we present the theory of FCA for the Q1D electron gas in QW structures
when carriers are scattered by boundary roughness. We consider the FCA for cases where
the radiation field is polarized along the length of the wire. The absorption coefficient will be
calculated for the examples of GaAs QW wires. We shall also consider in detail the applicability
of the standard semiclassical approximation to these QW wires.

2. Formalism

We assume that a gas of carriers is confined to move in a long thin wire that is embedded in an
insulating cladding. For simplicity, we choose the cross section of the wire to be rectangular,
with W and Lz the cross-sectional dimensions along the y and z directions respectively and
with L the length of the wire along the x direction where electrons are assumed to move
freely. Assuming the usual effective-mass approximation for the conduction band, the energy
eigenfunctions and eigenvalues for electrons in a rectangular thin wire can be written as

Eknl = Ek + En + El = h̄2k2

2m∗ + n2 E0
W + l2 E0

L Z

E0
W = π2h̄2

2m∗W 2
, E0

L Z
= π2h̄2

2m∗Lz
2

n, l = 1, 2, 3, . . . (1)

�knl = [2/(W Lz L)1/2] sin(πny/W ) sin(πlz/Lz) exp(ikx).

The FCA coefficient when boundary roughness scattering is dominant can be related to
the scattering rate for free carriers to make an intraband transition from a given initial state with
the simultaneous scattering of carriers by boundary roughness and can be calculated using the
standard second-order Born golden rule approximation. In second-order perturbation theory,
the matrix element connecting the initial and final states for an optical transition in a QW wire
is given by

〈k ′n′l ′|M|knl〉 =
∑

k′′n′′l′′

[ 〈k ′n′l ′|HR|k ′′n′′l ′′〉〈k ′′n′′l ′′|HB R|knl〉
Eknl − Ek′′n′′l′′

+
〈k ′n′l ′|HB R|k ′′n′′l ′′〉〈k ′′n′′l ′′|HR|knl〉

Eknl − Ek′′n′′l′′ + h̄�

]
(2)

where knl, k ′n′l ′ and k ′′n′′l ′′ are the wavevector and subband indices for initial, final and
intermediate state respectively, h̄� is the photon energy, HR is the interaction Hamiltonian
between the electrons and the radiation field and HB R is the boundary-roughness scattering
potential.
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In particular we treat the case of photon absorption mediated by carrier scattering from
boundary roughness fluctuations, although many of the qualitative conclusions will be equally
applicable to other scattering mechanisms. The roughness in the wire is conventionally
characterized by a fluctuation magnitude � and a correlation length � in the Gaussian
autocorrelation function [1] defined by

〈�(x)�(x ′)〉 = �2 exp

(
− (x − x ′)2

�2

)
.

The square of the matrix element caused by boundary roughness along the wire direction can
be approximated by the relation [19–22]

|〈k ′n′l ′|HB R|knl〉|2 = π9/2n2n′2h̄4��2

2W 6 L
exp

(
−q2�2

4

)(
1 +

1

2
δll′

)
(3)

where q = k − k ′,� is the amplitude and � is the lateral correlation length of the roughness.
The matrix elements of the electron–photon interaction Hamiltonians using the

wavefunctions are

〈k ′n′l ′|HR|knl〉 = − eh̄

m∗

(
2π h̄n0

V � ∈
)1/2

(εκ)δκκ ′δnn′δll′ (4)

when the radiation field is polarized along the wire. Here ∈ is the dielectric constant of the
material, n0 is the number of photons in the radiation field, ε is the polarization vector of the
radiation field and V is the volume of the thin wire.

From equations (2)–(4) the scattering rate for the electron–boundaryroughness interaction
and the electron–photon interaction can be obtained as

Wknl,k′ n′l′ = 2π6e2n0��2

m ∗4 �3 ∈ W 6 L2V

∑
k′n′l′

n2n′2
(

1 +
1

2
δll′

)
|k ′ − k|2 exp

(
−q2�2

4

)

× δ(Ek′n′l′ − Eknl − h̄�). (5)

The absorption coefficient is calculated by summing over all occupied initial states and
unoccupied final states. The coefficient FCA for a Q1D electron gas for a radiation field
polarized along the axis of the wire is finally given by

α = π5e2��2

8�3m∗2 ∈1/2 V W 6

∑∑
n2n′2

(
1 +

1

2
δll′

) ∫∫∫
( fknl − fk′n′l′ )

× (Ek′ + Ek − 2
√

Ek′ Ek cos ϑ)√
Ek′ Ek

exp

(
−q2�2

4

)

× δ(Ek′n′l′ − Eknl − h̄�) dEk dEk′ dϑ (6)

where ϑ is the scattering angle, which in Q1D can have only the two values of π for backward
scattering and 0 for forward scattering. The integral over final states can be eliminated using
the energy-conserving delta function.

For the case of a non-degenerate, Q1D electron gas, the electron distribution function is

fknl = (2π)1/2h̄neab

γ δ(m∗kB T )1/2
exp

(
−n2 E0

W + l2 E0
L Z

kB T

)
exp

(
− h̄2k2

2m∗kB T

)
(7)

γ =
∑

n

exp

(
−n2 E0

W

kB T

)
, δ =

∑
l

exp

(
− l2 E0

L Z

kB T

)
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where ne is the concentration of the electrons. Using equation (7) in (6) we obtain the FCA

α = π11/2e2h̄ne��2

√
2�3m∗5/2c ∈1/2 γ δW 6(kB T )1/2

[
1 − exp

(
− h̄�

kB T

)]∑∑
n2n′2

(
1 +

1

2
δll′

)

× exp

(
−n2 E0

W + l2 E0
L Z

kB T

)
Z exp

(
Z

2kB T

){
1

2

[(
p + b

p − b

)1/2

+

(
p + b

p − b

)−1/2]

× K1

(
Z

2

√
p2 − b2

)
1

+
b√

p2 − b2
K1

(
Z

2

√
p2 − b2

)}
(8)

where

Z = h̄� − (n′2 − n2)E0
W + (l ′2 − l2)E0

L Z
, p = 1

kB T
− m∗�2

h̄2 , b = m∗�2

2h̄2

and K1(y) is the modified Bessel function of the second kind.
It is interesting to note that in the quantum size limit, in the temperature range where

intersubband transitions are not allowed due to the energy differences between the subbands
being very large (i.e. EW /kB T > 1, EL Z /kB T > 1, and EW > h̄�, EL Z > h̄�), we can
assume n = n′ = l = l ′ = 1 and p = 1

kB T (p � b). In this limit the absorption coefficient of
equation (8) can be rewritten

α = 3π11/2e2h̄2ne��2

2
√

2c�2 ∈1/2 m∗5/2W 6(kB T )1/2

[
1 − exp

(
− h̄�

kBT

)]
exp

(
h̄�

2kB T

)
K1

(
h̄�

2kB T

)
. (9)

This expression can be compared with the following expression for the FCA in a non-degenerate
Q1D electron gas when acoustic phonon scattering via the deformation potential dominates [15]

α1D
ac = 25/2√πnee2 E2

d(kB T )1/2

∈1/2 cρυ2
s m∗1/2W 2γ δ

[
1 − exp

(− h̄�
kB T

)]
(h̄�)3

∑
nl

∑
n′l′

(
1 +

1

2
δnn′

)(
1 +

1

2
δlll′

)

× exp

(
−n2 E0

n + l2 E0
l

kB T

)
Z exp

(
Z

2kB T

)
K1

(
Z

2kB T

)
(10)

where ρ is the density of the semiconductor, υs is the velocity of sound and Ed is the deformation
potential. The coefficients have an identical variation with photon frequency �, which may be
seen from (9) and (10). The identical nature of the variation for the two scattering processes may
be explained by examining the matrix elements for scattering. For the case n = n′ = l = l ′ = 1
the ratio α1D

B R/α1D
ac is

α1D
B R

α1D
ac

= π5h̄4��2ρυ2
s

12E2
dkB T W 4m∗2

. (11)

In this form, the ratio depends only upon material parameters and absolute temperature
and does not depend upon photon frequency.

In the quantum limit, using the expression for the FCA coefficient α1D
alloy taking into

consideration the alloy-disorder scattering given by (12) in [17] and (9), we obtain

α1D
B R

α1D
alloy

= π4h̄4��2

6(δV )2�0x(1 − x)m∗2W 4
(12)

where �0 is the volume of the unit cell and δV = 0.6 eV is the alloy-disorder scattering
potenial. In this form, the ratio α1D

B R/α1D
alloy depends only material parameters and increases

with increasing transverse dimension of the quantum wire.
In the limit of very long wavelengths, the absorption coefficient is known to reduce to

the semiclassical form [29], which scales as λ2. The semiclassical expression becomes a
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Figure 1. FCA coefficient in a GaAs quantum wire due to boundary roughness scattering as a
function of the photon frequency for T = 300 K (3). Curves 1 and 4 correspond to the FCA for
a GaAs quantum wire when the carriers are scattered by polar optical and acoustic phonons [16].
Curve 2 corresponds to the FCA for Ga0.47In0.53As quantum wire when the carrier are scattered
by alloy disorder [17]. In the all cases transverse dimensions is same, W = Lz = 10−6 cm.

reasonable approximation in the limit of kB T � h̄� for non-degenerate statistics. In this limit
the absorption coefficient of equation (9) can be rewritten as

αsc = 3π11/2e2h̄2ne��2

√
2c�2 ∈1/2 m∗5/2W 6(kB T )1/2

. (13)

3. Discussion

We have obtained general expressions for the quantum wires when the carriers are scattered by
boundary roughness. The FCA coefficient is expressed as a function of h̄� and also depends on
W and T . We have evaluated, numerically, the above expressions for FCA coefficient at 300 K
and parameters characteristic of GaAs and electron concentration ne = 1017 cm−3,� = 4.2 Å
and � = 50 Å. On the basis of expressions obtained we have constructed figures 1–4.

In figure 1, we plot the FCA coefficient α1D
B R as a function of the photon energy h̄�. Curves

1 and 4 refer to polar optic and acoustic phonon modes [16] and curves 2 and 3 to alloy disorder
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Figure 2. The FCA coefficient is shown as a function of 1/W 6. Curve 1 is for the wavelength
λ = 3 µm and curve 2 is for λ = 5 µm.

and boundary roughness. It is shown that α1D
B R decreases monotonically with increasing photon

energy. The kinks in the curves indicate boundary roughness-assisted transition between the
subbands. The enhancement of the absorption coefficient associated with scattering to higher
subbands also holds for other scattering mechanisms [15–17]. It is shown that in a quantum
wire the electron–boundary roughness interaction gives a greater contribution to the absorption
than the electron–acoustic phonon interaction. It can also be seen that FCA coefficients due
to boundary roughness and to alloy disorder and polar-optic phonons are of the same order.

In figure 2, we plot the FCA coefficient α1D
alloy in a GaAs quantum wire as a function of

the width of the wire. The absorption coefficient shows the oscillatory behaviour as a function
of 1/W 6 whenever the photon energy is such that boundary roughness-assisted transition
takes place to one of the higher subbands of the QW wire. It is shown that FCA becomes
considerably enhanced as the width of the wire decreases. It was predicted in [19–22] that
the relaxation rate due to boundary roughness scattering in Q1D structures increases as the
transverse dimensions of the wire diminish. This increase in the scattering rate explains the
increase in the FCA coefficient predicted in our present numerical results for a quantum wire.
As the wavelength decreases more and more oscillations are observed and the absorption
coefficient increases linearly with αB R ∝ 1/W 6.
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Figure 3. Boundary roughness-assisted quantum (full curve) and semiclassical (dashed curve)
FCA coefficients as a function of wavelength in a GaAs quantum wire.

The semiclassical (with a λ2 wavelength dependence) absorption coefficient
(equation (13)) and quantum FCA coefficient (8) in the intermediate wavelength range are
plotted in figure 3. The quantum absorption coefficient is seen to converge to the semiclassical
value as the wavelength increases beyond 100 µm. For shorter wavelengths, the quantum FCA
coefficient is significantly lower than semiclassical result. These results are directly analogous
to the distinct regimes in the wavelength dependence of the quasi-two-dimensional [12] and
bulk FCA coefficients [29].

In figure 4 we plot the temperature dependence of the ratio α1D
B R/α1D

ac and α1D
B R/α1D

alloy for
various transverse dimensions of the wire. In these structures, as is well known, the FCA
coefficient due to phonon [15, 16] and alloy-disorder scattering [17] increases with decreasing
cross-sectional area of the wire. Since the absorption coefficient due to boundary roughness
scattering increases with decreasing transverse dimensions of the thin wire as a function of
1/W 6, we expect boundary roughness scattering to dominate the scattering of the carriers in
thinner wires.

With increasing temperature, scattering by boundary roughness and alloy disorder
diminishes so the scattering rate should be smaller than that at lower temperatures. Thus, one
should expect the FCA coefficient due to boundary roughness and alloy disorder to become
much higher as the temperature is lowered.

With decreasing temperature, scattering by phonons diminishes so the scattering rate
should be smaller than that at higher temperatures. Therefore the FCA coefficient due to
phonons becomes much smaller as the temperature is lowered.

In conclusion, we predict that when boundary roughness scattering is dominant, the FCA
coefficient should increase with decreasing transverse dimensions of the wire for radiation
polarized along the length of the wire. We also predict an oscillatory dependence of the FCA
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Figure 4. In the quantum limit, the ratio of the FCA coefficient αB R to the αac(1, 2) and
αalloy (1′, 2′) FCA coefficient is shown as a function of the temperature for various transverse
dimensions of the wire. We have chosen: 1, 1′W = 100 Å and 2, 2′W = 80 Å.

on the width of the wire and photon frequency. The oscillatory behaviour is explained in terms
of boundary roughness transitions between quantized subbands arising from the confinement of
electrons in the Q1D semiconducting structure. The electron–boundary roughness scattering
is important especially when the wire width W and temperature decreases. The electron–
boundary roughness interaction gives a greater contribution to the absorption than the electron–
acoustic phonon interaction in Q1D structures made from the same materials.
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